Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834988

RESUMO

Non-histone nuclear proteins HMGB1 and HMGB2 (High Mobility Group) are involved in many biological processes, such as replication, transcription, and repair. The HMGB1 and HMGB2 proteins consist of a short N-terminal region, two DNA-binding domains, A and B, and a C-terminal sequence of glutamic and aspartic acids. In this work, the structural organization of calf thymus HMGB1 and HMGB2 proteins and their complexes with DNA were studied using UV circular dichroism (CD) spectroscopy. Post-translational modifications (PTM) of HMGB1 and HMGB2 proteins were determined with MALDI mass spectrometry. We have shown that despite the similar primary structures of the HMGB1 and HMGB2 proteins, their post-translational modifications (PTMs) demonstrate quite different patterns. The HMGB1 PTMs are located predominantly in the DNA-binding A-domain and linker region connecting the A and B domains. On the contrary, HMGB2 PTMs are found mostly in the B-domain and within the linker region. It was also shown that, despite the high degree of homology between HMGB1 and HMGB2, the secondary structure of these proteins is also slightly different. We believe that the revealed structural properties might determine the difference in the functioning of the HMGB1 and HMGB2 as well as their protein partners.


Assuntos
Proteína HMGB1 , Proteína HMGB2 , DNA/química , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Proteína HMGB2/química , Proteína HMGB2/metabolismo , Fatores de Transcrição , Ligação Proteica , Animais , Bovinos
2.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142700

RESUMO

Serratia proteamaculans synthesizes the intracellular metalloprotease protealysin. This work was aimed at searching for bacterial substrates of protealysin among the proteins responsible for replication and cell division. We have shown that protealysin unlimitedly cleaves the SOS response protein RecA. Even 20% of the cleaved RecA in solution appears to be incorporated into the polymer of uncleaved monomers, preventing further polymerization and inhibiting RecA ATPase activity. Transformation of Escherichia coli with a plasmid carrying the protealysin gene reduces the bacterial UV survival up to 10 times. In addition, the protealysin substrate is the FtsZ division protein, found in both E. coli and Acholeplasma laidlawii, which is only 51% identical to E. coli FtsZ. Protealysin cleaves FtsZ at the linker between the globular filament-forming domain and the C-terminal peptide that binds proteins on the bacterial membrane. Thus, cleavage of the C-terminal segment by protealysin can lead to the disruption of FtsZ's attachment to the membrane, and thereby inhibit bacterial division. Since the protealysin operon encodes not only the protease, but also its inhibitor, which is typical for the system of interbacterial competition, we assume that in the case of penetration of protealysin into neighboring bacteria that do not synthesize a protealysin inhibitor, cleavage of FtsZ and RecA by protealysin may give S. proteamaculans an advantage in interbacterial competition.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Zeladoria , Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Polímeros/metabolismo
3.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752045

RESUMO

The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways in eukaryotic cells. Abnormal functioning of this system has been observed in cancer and neurological diseases. The 20S proteasomes, essential components of the UPS, are present not only within the cells but also in the extracellular space, and their concentration in blood plasma has been found to be elevated and dependent upon the disease state, being of prognostic significance in patients suffering from cancer, liver diseases, and autoimmune diseases. However, functions of extracellular proteasomes and mechanisms of their release by cells remain largely unknown. The main mechanism of proteasome activity regulation is provided by modulation of their composition and post-translational modifications (PTMs). Moreover, diverse PTMs of proteins are known to participate in the loading of specific elements into extracellular vesicles. Since previous studies have revealed that the transport of extracellular proteasomes may occur via extracellular vesicles, we have set out to explore the PTMs of extracellular proteasomes in comparison to cellular counterparts. In this work, cellular and extracellular proteasomes were affinity purified and separated by SDS-PAGE for subsequent trypsinization and matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) analysis. In total, we could identify 64 and 55 PTM sites in extracellular and cellular proteasomes, respectively, including phosphorylation, ubiquitination, acetylation, and succinylation. We observed novel sites of acetylation at K238 and K192 of the proteasome subunits ß2 and ß3, respectively, that are specific for extracellular proteasomes. Moreover, cellular proteasomes show specific acetylation at K227 of α2 and ubiquitination at K201 of ß3. Interestingly, succinylation of ß6 at the residue K228 seems not to be present exclusively in extracellular proteasomes, whereas both extracellular and cellular proteasomes may also be acetylated at this site. The same situation takes place at K201 of the ß3 subunit where ubiquitination is seemingly specific for cellular proteasomes. Moreover, crosstalk between acetylation, ubiquitination, and succinylation has been observed in the subunit α3 of both proteasome populations. These data will serve as a basis for further studies, aimed at dissection of the roles of extracellular proteasome-specific PTMs in terms of the function of these proteasomes and mechanism of their transport into extracellular space.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Sequência de Aminoácidos , Humanos , Células K562 , Peptídeos/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitina/metabolismo , Ubiquitinação
4.
FEBS Lett ; 594(19): 3095-3107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748449

RESUMO

Protealysin is a thermolysin-like protease of Serratia proteamaculans capable of specifically cleaving actin, which correlates with the invasive activity of these bacteria. Here, we show that inactivation of the protealysin gene does not inhibit invasion but, in contrast, leads to a twofold increase in the S. proteamaculans invasive activity. By mass spectrometry, we identified the outer membrane protein OmpX as a substrate of protealysin. Recombinant E. coli carrying the OmpX gene truncated by 40 N-terminal residues or both the OmpX and protealysin genes, in contrast to the full-length OmpX, do not increase adhesion of these bacteria, indicating that the 40 N-terminal residues of OmpX are indispensable for S. proteamaculans invasion. Our results show that both protealysin and its substrates can stimulate Serratia invasion.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Serratia/metabolismo , Serratia/patogenicidade , 2,2'-Dipiridil/farmacologia , Células 3T3 , Animais , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli/metabolismo , Galactose/farmacologia , Glucose/farmacologia , Células HeLa , Humanos , Deficiências de Ferro , Camundongos , Proteínas Recombinantes/farmacologia , Serratia/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Termolisina/metabolismo , Fatores de Virulência/metabolismo
5.
Oncotarget ; 8(60): 102134-102149, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254231

RESUMO

Proteasome-mediated proteolysis is important for many basic cellular processes. In addition to their functions in the cell, proteasomes have been found in physiological fluids of both healthy and diseased humans including cancer patients. Higher levels of these proteasomes are associated with higher cancer burden and stage. The etiology and functions of these proteasomes, referred to as circulating, plasmatic, or extracellular proteasomes (ex-PSs), are unclear. Here we show that human cancer cell lines, as well as human endometrium-derived mesenchymal stem cells (hMESCs), release proteasome complexes into culture medium (CM). To define ex-PS composition, we have affinity purified them from CM conditioned by human leukemia cell line K562. Using matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS), we have identified core 20S proteasome subunits and a set of 15 proteasome-interacting proteins (PIPs), all previously described as exosome cargo proteins. Three of them, PPIase A, aldolase A, and transferrin, have never been reported as PIPs. The study provides compelling arguments that ex-PSs do not contain 19S or PA200 regulatory particles and are represented exclusively by the 20S complex.

6.
ACS Chem Biol ; 12(3): 814-824, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106375

RESUMO

We report the bioinformatic prediction and structural validation of two lasso peptides, acinetodin and klebsidin, encoded by the genomes of several human-associated strains of Acinetobacter and Klebsiella. Computation of the three-dimensional structures of these peptides using NMR NOESY constraints verifies that they contain a lasso motif. Despite the lack of sequence similarity to each other or to microcin J25, a prototypical lasso peptide and transcription inhibitor from Escherichia coli, acinetodin and klebsidin also inhibit transcript elongation by the E. coli RNA polymerase by binding to a common site. Yet, unlike microcin J25, acinetodin and klebsidin are unable to permeate wild type E. coli cells and inhibit their growth. We show that the E. coli cells become sensitive to klebsidin when expressing the outer membrane receptor FhuA homologue from Klebsiella pneumoniae. It thus appears that specificity to a common target, the RNA polymerase secondary channel, can be attained by a surprisingly diverse set of primary sequences folded into a common threaded-lasso fold. In contrast, transport into cells containing sensitive targets appears to be much more specific and must be the major determinant of the narrow range of bioactivity of known lasso peptides.


Assuntos
Acinetobacter/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Klebsiella pneumoniae/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Antibacterianos/farmacologia , Humanos , Proteólise
7.
Bioconjug Chem ; 28(2): 426-437, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27977146

RESUMO

In this study, we have shown that substitution of chloride ligand for imidazole (Im) ring in the cyclometalated platinum complex Pt(phpy)(PPh3)Cl (1; phpy, 2-phenylpyridine; PPh3, triphenylphosphine), which is nonemissive in solution, switches on phosphorescence of the resulting compound. Crystallographic and nuclear magnetic resonance (NMR) spectroscopic studies of the substitution product showed that the luminescence ignition is a result of Im coordination to give the [Pt(phpy)(Im)(PPh3)]Cl complex. The other imidazole-containing biomolecules, such as histidine and histidine-containing peptides and proteins, also trigger luminescence of the substitution products. The complex 1 proved to be highly selective toward the imidazole ring coordination that allows site-specific labeling of peptides and proteins with 1 using the route, which is orthogonal to the common bioconjugation schemes via lysine, aspartic and glutamic acids, or cysteine and does not require any preliminary modification of a biomolecule. The utility of this approach was demonstrated on (i) site-specific modification of the ubiquitin, a small protein that contains only one His residue in its sequence, and (ii) preparation of nonaggregated HSA-based Pt phosphorescent probe. The latter particles easily internalize into the live HeLa cells and display a high potential for live-cell phosphorescence lifetime imaging (PLIM) as well as for advanced correlation PLIM and FLIM experiments.


Assuntos
Histidina/química , Imidazóis/química , Compostos Organometálicos/química , Peptídeos/química , Platina/química , Ubiquitina/química , Sequência de Aminoácidos , Células HeLa , Humanos , Medições Luminescentes , Modelos Moleculares , Conformação Proteica , Coloração e Rotulagem
8.
Beilstein J Org Chem ; 12: 2125-2135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829919

RESUMO

The reaction of 5-hydroxymethylfurfural (5-HMF) with arenes in superacidic trifluoromethanesulfonic acid (triflic acid, TfOH) as the solvent at room temperature for 1-24 h gives rise to 5-arylmethylfurfurals (yields of 17-91%) and 2-arylmethyl-5-(diarylmethyl)furans (yields of 10-37%). The formation of these two types of reaction products depends on the nucleophilicity of the arene. The same reactions under the action of acidic zeolites H-USY in high pressure tubes at 130 °C for 1 h result in the formation of only 5-arylmethylfurfurals (yields of 45-79%). 2,5-Diformylfuran (2,5-DFF) in the reaction with arenes under the action of AlBr3 at room temperature for 1 h leads to 5-(diarylmethyl)furfurals (yields of 51-90%). The reactive protonated species of 5-HMF and 2,5-DFF were characterized by NMR spectroscopy in TfOH and studied by DFT calculations. These reactions show possibilities of organic synthesis based on biomass-derived 5-HMF and 2,5-DFF.

9.
Mol Biotechnol ; 57(1): 36-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25164490

RESUMO

The proteasome is a multi-subunit protein complex that serves as a major pathway for intracellular protein degradation, playing important functions in various biological processes. The C-terminus of the ß7 (PSMB4) proteasome subunit was tagged with EGFP and with a composite element for affinity purification and TEV cleavage elution (HTBH). When the construct was retrovirally delivered into HeLa cells, virtually all of the ß7-EGFP-HTBH fusion protein was found to be incorporated into fully functional proteasomes. This ensured that subcellular localization of the EGFP signal in living HeLa cells could be attributed to ß7-EGFP-HTBH within the proteasome complex rather than to free protein. The ß7-EGFP-HTBH fusion can, therefore, serve as a valuable tool for in vivo imaging of proteasomes as well as for high-affinity purification of these complexes and associated molecules for subsequent analyses.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas de Fluorescência Verde/metabolismo , Imagem Molecular , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/metabolismo , Sobrevivência Celular , Células HeLa , Humanos , Subunidades Proteicas/metabolismo , Proteólise , Proteínas Recombinantes de Fusão
10.
Mol Cell Biochem ; 347(1-2): 79-87, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20941529

RESUMO

Transcription of eukaryotic genes is regulated by phosphorylation of serine residues of heptapeptide repeats of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). We previously reported that protein phosphatase-1 (PP1) dephosphorylates RNAPII CTD in vitro and inhibition of nuclear PP1-blocked viral transcription. In this article, we analyzed the targeting of RNAPII by PP1 using biochemical and mass spectrometry analysis of RNAPII-associated regulatory subunits of PP1. Immunoblotting showed that PP1 co-elutes with RNAPII. Mass spectrometry approach showed the presence of U2 snRNP. Co-immunoprecipitation analysis points to NIPP1 and PNUTS as candidate regulatory subunits. Because NIPP1 was previously shown to target PP1 to U2 snRNP, we analyzed the effect of NIPP1 on RNAPII phosphorylation in cultured cells. Expression of mutant NIPP1 promoted RNAPII phosphorylation suggesting that the deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription.


Assuntos
Espectrometria de Massas , Proteína Fosfatase 1/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Domínio Catalítico , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...